19 research outputs found

    Single- and multi-photon excited fluorescence from serotonin complexed with B-cyclodextrin

    Get PDF
    The fluorescence of serotonin on binding with B-cyclodextrin has been studied using both steady-state and time-resolved methods. Steady state fluorescence intensity of serotonin at 340 nm showed ~ 30% increase in intensity on binding with Ka ~ 60 dm3 mol 1 and the fluorescence lifetimes showed a corresponding increase. In contrast, the characteristic green fluorescence (‘hyperluminescence’) of serotonin observed upon multiphoton near-infrared excitation with sub-picosecond pulses was resolved into two lifetime components assigned to free and bound serotonin. The results are of interest in relation to selective imaging and detection of serotonin using the unusual hyperluminescence emission and in respect to recent determinations of serotonin by capillary electrophoresis in the presence of cyclodextrin. The results also suggest that hyperluminescence occurs from multiphoton excitation of a single isolated serotonin molecule

    Anticancer phototherapy using activation of E-combretastatins by two-photon–induced isomerization

    Get PDF
    The photoisomerization of relatively nontoxic E-combretastatins to clinically active Z-isomers is shown to occur in solution through both one- and two-photon excitations at 340 and 625 nm, respectively. The photoisomerization is also demonstrated to induce mammalian cell death by a two-photon absorption process at 625 nm. Unlike conventional photodynamic therapy (PDT), the mechanism of photoisomerization is oxygen- independent and active in hypoxic environments such as in tumors. The use of red or near-infrared (NIR) light for two-photon excitation allows greater tissue penetration than conventional UV one-photon excitation. The results provide a baseline for the development of a novel phototherapy that overcomes nondiscriminative systemic toxicity of Z-combretastatins and the limitations of PDT drugs that require the presence of oxygen to promote their activity, with the added benefits of two-photon red or NIR excitation for deeper tissue penetration

    Ultrafast vibrational spectroscopic Studies on the photoionization of the α-Tocopherol analogue Trolox C

    Get PDF
    The initial events after photoexcitation and photoionization of α-tocopherol (vitamin E) and the analogue Trolox C have been studied by femtosecond stimulated Raman spectroscopy, transient absorption spectroscopy and time-resolved infrared spectroscopy. Using these techniques it was possible to follow the formation and decay of the excited state, neutral and radical cation radicals and the hydrated electron that are produced under the various conditions examined. α Tocopherol and Trolox C in methanol solution appear to undergo efficient homolytic dissociation of the phenolic –OH bond to directly produce the tocopheroxyl radical. In contrast, Trolox C photochemistry in neutral aqueous solutions involves intermediate formation of a radical cation and the hydrated electron which undergo geminate recombination within 100 ps in competition with deprotonation of the radical cation. The results are discussed in relation to recently proposed mechanisms for the reaction of α-tocopherol with peroxyl radicals, which represents the best understood biological activity of this vitamin

    Promising near-infrared non-targeted probes: benzothiazole heptamethine cyanine dyes

    No full text
    A series of benzothiazole heptamethine cyanine dyes have been synthesized and their photophysical properties evaluated in relation to their structural features. These have been compared against two classical probes of this type: Indocyanine Green (IGC) and New Indocyanine Green (IR-820). Growth inhibitory studies were also performed using a eukaryotic, unicellular organism, fission yeast Schizosaccharomyces pombe. Herein we highlight some potentially interesting candidates with improved fluorescence quantum yields when compared with ICG and IR-820
    corecore